Everything's Connected: Teaching Problem-Solving with Real-World Issues and Models

Tamra Stambaugh, PhD Emily Mofield, EdD

Real-World Problem Solving

Content Areas

Climate Change Pandemic Pollution Social Injustice Advanced Technologies Water Supply **Space Exploration**

Use of Models

- Develop expertise in a content domain by embedding subject specific process models.
- Applied as a tool to differentiate for gifted (complexity)
- Used to guide students to demonstrate their expertise in creative and meaningful ways.
- Vetted by experts in the field

Developing Expertise

Addressing Preconceptions & Concepts

- Connecting to world
- Overarching concepts as a way to "frame" outside world
- O Appropriate content & understanding

• What does it mean to "do" – DISCIPLINE SPECIFIC

- Inquiry and Investigation
- Thinking Like a
- Using the models and vocabulary of...
- Constructing meaning

Metacognition

- Reflecting on what was learned
- Discussion
- Feedback
- O Questions

2005

National Research Council

Novices vs. Experts

- When experts solve problems, they spend considerably more time <u>defining the problem</u> than novices do and have stronger metacognitive skills.
- Develop a mental framework for organizing knowledge
- Retrieve integrated collective facts (rather than piecemeal facts)
- Perceive structure of situations in order to know next steps and examine patterns
- Understand when to revise ideas

(Adams, Wieman, & Schwartz, 2008, para 2).

Social Studies Wheel

Single factors related to issue

Geography- What areas of the world are contributing the most to the trash issue?

Economics- Plastics are cheap and easy to make. Businesses make more money from making large quantities of cheap goods.

Innovation- The innovation of plastic makes life easier (introduced after WWII as light, durable material).

Culture- Disposing items after one use is the norm

Social Structure- Citizens are not aware of the long-term consequences of one- use disposable plastics.

Politics/Power- The laws in various states are different (e.g., banning plastic bags); lack of consistency across the globe.

Making connections across factors

Politics/Government + Innovation: How can laws be used to incentivize new innovation?

Economics + Politics/Power: How might we create policies to discourage manufacturers from making plastics?

Students can use the Social Studies Wheel to:

- Analyze 8-10 interactions that cause the problem.
- Analyze 8-10 interactions that are effects of the problem.
- Analyze the "root" cause or underlying problem by examining interactions
- Hypothesize how a proposed solution will interact with multiple factors

Example: 9-11 Speech

Level 1	Level 2	Level 3
Economics: What impact did the 9-11 attacks have on trade and economy?	Geography + Culture: How did geography and culture influence the decisions of the War on Terror?	Geography + Conflict: How might the outcomes have been different if the attacks were done overseas? How would this have impacted the conflicts that ensued after the attacks?
Geography : What was the significance of the geography on the 9-11 attacks?	Which two factors on the wheel were most influential in creating the conflict that ensued after the 9- 11 attacks?	
Culture : What role did culture play in the 9-11 attacks?		
Politics : How does the government structure impact the US's response to the 9-11 attacks?		

Real World Problem: - Is the problem of ocean trash reversible?

- Scientific Information What scientific information is related to this idea exists? Did it work? What effects did it have in the short term? Long term? (ecosystems, food chains, physical science- structure of matter)
- **Evidence/Data-** What data do I need to collect to find out if this will work? Where does the trash come from? How does it travel?
- **Processes/Methods-** What methods have already been used to study this problem? {use of drone technology and algorithms to analyze plastic items; use of software to determine how the trash travels)
- **Modeling-** What might happen if plastic use decreased by 20%? What would a model of trash spread look like with 20% increase in plastics? What conditions do I need to consider as part of my model?
- **Perspectives/Audience** What other perspectives need to be considered? How might different scientists look at this differently? What about the general public? (marine biologists, residents)
- **Findings/Solutions** What other solutions have worked to stop the spread of the trash?

Simple Questions- NGSS Cross-Cutting Concepts

• **Systems/Energy & Matter:** What are the system's inputs, boundaries, outputs, and interactions? How does energy flow in and out of the system? What systems are affected?

• **Patterns-** What patterns do I notice? How can this be classified? (Scientists can uncover cause of problem by examining where trash comes from and what type)

• Scale & Proportion- How can I measure or quantify____? How does proportion affect/predict____? (We can only see 1% of the trash; we must understand the scale of rubbish per person)

• **Stability & Change**- What changes occur as a result of ___? What causes or prohibits stability? What does not change?

• **Structure & Function-** What are the parts? What are the functions? How are the parts related?

• Cause-effect- What are the causes of ___? What effect does __ have on ___?

Example: Cloud seeding

Level 1	Level 2	Level 3
Scientific Information: What scientific evidence do we have to support cloud seeding?	Scale and Proportion + Scientific Information: How often can cloud seeding be done without causing harm? What	Scale and Proportion + Cause and Effect + Modeling: What if we increased the amount of salt within the salt:water ratio. Would this
Cause and effect : What effects does cloud seeding have on the environment?	information or evidence suggests this or do we need to collect?	necessarily produce more rain? Create a model.
Structure and Function: Why are cumulus clouds targeted for cloud seeding? What is it about their structure that enables cloud seeding to happen?		

Make Learning and Models Visible - Connect Multiple Disciplines Through Arrows, String, or Other Ways to Show Interactions and Connections

How can teach problem solving skills across different content domains?

- City Development/Population Growth & Ecosystems
 - Genetically Modified Foods
 - Clean Water
 - Model United Nations

Application of Models

Students will learn to think as an expert in the field when teachers

- Use models over time in a variety of ways
- Embed complex questions within instruction
- Compare patterns of interactions across lessons
- Intentionally incorporate complexity within student products, tasks, and assessments
- Allow opportunities for student-driven exploration of issues and texts
- Student-led connections (Socratic Seminars)

Use models to

- Internalization of thinking like an expert
- Student planning and preplanning for projects, problembased learning, writing, competitions, and independent study
- Teacher planning and differentiation
- Other ideas?

Reflection

- How do you envision using these models in your own content?
- How do these models impact student learning and how you teach problem solving in various content area?

For More Information and Examples

Vanderbilt PTY Curriculum Series Taylor Francis-Routledge (Prufrock Press)

tamra.stambaugh@gmail.com emily.mofield@lipscomb.edu