Engaging Students in STEM Topics through Problem-Based Learning

Kimberley Daly, PhD ● Anne K. Horak, PhD ● Dana L. Plowden, MEd Project ExCEL – Ignite, George Mason University

ExCEL & E-Ignite

Jacob K. Javits federally funded projects

If we prepare doctors with PBL, we can prepare students with PBL.

Characteristics of Problem-Based Learning

Ill-structured problem

Analysis of multiple perspectives and decision making

Habits of mind of a practitioner

Instructional Differences

Ill-structured
Problem

Cognitive Apprenticeship Student as Stakeholder

Initiates the instruction

Models openmindedness and curiosity

Authority

Needs more information

Creates an environment for student self-directed learning

Responsibility

Has more than one resolution

Coaches students with metacognitive questions to prompt to reflection

Accountability

Engagement

 Students are immersed in the problem.

Inquiry & Investigation

Students
 begin to
 uncover
 information
 about the
 problem.

Definition

 Students frame the problem.

Resolution

 Students present solutions.

Debrief

• Students reflect.

Source: Horak, A. K. & Shaklee, B. (2017). Elements of problem based learning. [Unpublished infographic]. Project ExCEL. George Mason University.

How PBL Teaches Creative and Critical Thinking

Multidisciplinarity and Transdisciplinarity

Connections for English Language Arts

Units with a STEM Focus

Completed Units

Units Under Construction

Screens in
Schools: A Problem
Investigating the
Value of
Educational
Technology in the
Classroom

Problem
Investigating the
Use of
Urban Beekeeping
to Support
Honeybee Health

The Problem with Plastics: A Problem Investigating Single-Use Plastic and Its Impact on the Oceanic Ecosystem

Artificial Intelligence

Finding Connections to STEM Content

Role of the Science Expert

5 E Alignment

Bees in the City: A Problem Investigating the Use of Urban Beekeeping to Support Honeybee Health

Next Generation Science Standards (NGSS)

Hypothesis Building

Background Knowldege

Research

Complications

Additional Research

Reflection

Analyzing and Interpreting Data

Background Background Research

Distinguish between correlation & Conclusions causation

Reflection

Engaging in Argument from Evidence

Constructing Explanations and Designing Solutions

Multiple Sources of Evidence

Reliable Citations

Reflection

Cross-Cutting Concepts

Cause and Effect

Systems & Models

Stability & Change

Influence of Engineering Technology and Science on Society and the Natural World

Questions? Contact:

kdaly1@gmu.edu or ahorak@gmu - Project Questions

dlplowden@gmail.com – Curriculum Questions

To pilot or obtain copies of our PBL curriculum, please scan below:

Please cite as:

Daly, K., Horak, A. K. & Plowden, D. L. (2021, November 10-14). Engaging students in STEM topics through problem-based learning. Concurrent. National Association for Gifted Children Annual Conference. Denver, CO.